Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

M. N. Johnson ${ }^{\text {a }}$ and N. Feeder ${ }^{\text {b }}$

${ }^{\text {a }}$ University of Greenwich, Medway Campus, Anson, Chatham Maritime, Kent ME4 4TB, England, and ${ }^{\text {b }}$ Pfizer Ltd, IPC 049, Ramsgate Road, Sandwich, Kent CT13 9NJ, England

Correspondence e-mail:
matthew_johnson@sandwich.pfizer.com

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.043$
$w R$ factor $=0.118$
Data-to-parameter ratio $=15.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

DL-Histidine DL-tartrate

The crystal structure of DL-histidine dL-tartrate, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+} \cdot \mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{6}^{-}$, has been determined as part of an ongoing study of the fundamental effects of chirality on salt formation and hydrates. Discrete single-enantiomer chains of histidine are linked in two dimensions by hydrogen bonds to a racemic pair of tartrate molecules.

Comment

This study was undertaken to identify the effects of chirality on the formation of salts, specifically the way chirality may affect hydration, as a result of interactions between a chiral drug and a chiral counter-ion. Dl-Histidine and Dl-tartrate samples were purchased from Fluka and used in the crystallization. The asymmetric unit of the title compound, (I), contains one molecule of histidine as a monocation (protonated at the amine and imidazole N atoms and deprotonated at the carboxylic acid) and the tartrate as a monoanion (Fig. 1).

The histidines form chains of single enantiomers (Fig. 2) linked along the b axis by hydrogen bonds from the NH group of the imidazole ring to a carboxyl O atom of the next histidine, similar to those described by Suresh \& Vijayan (1987). The tartrate anions form dimers containing one $\mathrm{D}-$ and one l-tartrate ion in each pair (Fig. 2). The dimers are formed by means of a carboxylic acid O atom bonding to a neighbouring tartrate utilizing a side OH group [2.817 (2) Å]. Each histidine molecule in a chain is linked to the next chain below (viewed down the a axis in Fig. 2) by a single hydrogen bond from a carboxyl O atom to an NH group of the ammonium group [2.749 (2) A]. The tartrates link the chains of histidine in two dimensions to create a three-dimensional hydrogen-bond network.

Experimental

A 5 ml saturated aqueous solution of dL-histidine was mixed with a 5 ml saturated aqueous solution of DL-tartaric acid and the vial was covered with a pierced film. This was placed in a larger glass vial containing 25 ml of methanol, sealed, and allowed to stand for three weeks at room temperature.

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+} \cdot \mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{6}{ }^{-}$
$M_{r}=305.25$
Monoclinic, $P 2_{1} / c$
$a=4.9695$ (5) A
$b=13.4392$ (12) A
$c=19.2749$ (18) \AA
$\beta=90.253$ (2) ${ }^{\circ}$
$V=1287.3(2) \mathrm{A}^{3}$
$Z=4$
Data collection
Bruker SMART APEX CCD diffractometer
Thin-slice ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1997; Blessing, 1995)
$T_{\min }=0.843, T_{\max }=0.990$
7512 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.118$
$S=1.02$
2967 reflections
194 parameters
$D_{x}=1.575 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2967
reflections
$\theta=1.9-28.0^{\circ}$
$\mu=0.14 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Needle, colourless
$0.50 \times 0.10 \times 0.10 \mathrm{~mm}$

2967 independent reflections 2207 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=28.0^{\circ}$
$h=-6 \rightarrow 6$
$k=-17 \rightarrow 17$
$l=-25 \rightarrow 25$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0666 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.44 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.21$ e \AA^{-3}

Table 1

Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 8$	0.86	1.93	2.7689 (19)	166
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.86	1.84	2.6871 (19)	169
$\mathrm{N} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.89	1.87	2.7532 (18)	173
$\mathrm{N} 3-\mathrm{H} 3 B \cdots \mathrm{O} 7^{\text {iii }}$	0.89	2.09	2.7937 (18)	135
$\mathrm{N} 3-\mathrm{H} 3 B \cdots 6^{\text {iii }}$	0.89	2.35	3.1374 (18)	147
$\mathrm{N} 3-\mathrm{H} 3 \mathrm{C} \cdots \mathrm{O} 7^{\mathrm{ii}}$	0.89	1.85	2.7178 (18)	164
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{D} \cdots \mathrm{O} 1^{\text {iv }}$	0.82	1.77	2.5856 (17)	173
O5-H5A . . O $4^{\text {v }}$	0.82	2.11	2.8174 (19)	145
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 4$	0.82	2.30	2.7015 (19)	111
O6-H6 . $\mathrm{O}^{\text {8i }}$	0.82	1.92	2.7152 (18)	162

Symmetry codes: (i) $1-x, \frac{1}{2}+y, \frac{3}{2}-z$; (ii) $x-1, y, z$; (iii) $1-x, 1-y, 1-z$; (iv)
$1+x, \frac{3}{2}-y, z-\frac{1}{2} ;(v) 2-x, 2-y, 1-z$; (vi) $1+x, y, z$.

The unit-cell dimensions and angles were compared to those reported for the parent histidine enantiomers by Edington \& Harding (1974) and Madden et al. (1972). All H atoms were placed geometrically $[\mathrm{C}-\mathrm{H}=0.93-0.98, \mathrm{~N}-\mathrm{H}=0.86-0.89$ and $\mathrm{O}-\mathrm{H}=$ $0.82 \AA ; U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}$ (parent atom)] and refined using a riding model.

Data collection: SMART (Siemens, 1994); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

Figure 1
ORTEP-3 (Farrugia, 1997) plot of the asymmetric unit of (I) $(Z=4)$, with displacement ellipsoids drawn at the 50% probability level.

Figure 2
Hydrogen-bonding motifs for D-tartrate (green), L-histidine (yellow), Dhistidine (blue) and l-tartrate (pink).

ORTEP-3 (Farrugia, 1997) and Materials Studio (Accelrys, 2001); software used to prepare material for publication: SHELXL97.

References

Accelrys (2001). Materials Studio. Accelrys Inc., San Diego, CA, USA.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Edington, P. \& Harding, M. M. (1974). Acta Cryst. B30, 204-206.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Madden, J. J., McGandy, E. L., Seeman, N. C., Harding, M. M. \& Hoy, A. (1972). Acta Cryst. B28, 2382-2389.

Sheldrick, G. M. (1997). SADABS, SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1994). SMART (Version 5.622) and SAINT (Version 6.02). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Suresh, C. G. \& Vijayan, M. (1987). J. Biosci. 12, 13.

