ISSN 1600-5368

M. N. Johnson^a* and N. Feeder^b

^aUniversity of Greenwich, Medway Campus, Anson, Chatham Maritime, Kent ME4 4TB, England, and ^bPfizer Ltd, IPC 049, Ramsgate Road, Sandwich, Kent CT13 9NJ, England

Correspondence e-mail: matthew_johnson@sandwich.pfizer.com

Key indicators

Single-crystal X-ray study T = 295 K Mean σ (C–C) = 0.002 Å R factor = 0.043 wR factor = 0.118 Data-to-parameter ratio = 15.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

DL-Histidine DL-tartrate

The crystal structure of DL-histidine DL-tartrate, $C_6H_{10}N_3O_2^+ \cdot C_4H_5O_6^-$, has been determined as part of an ongoing study of the fundamental effects of chirality on salt formation and hydrates. Discrete single-enantiomer chains of histidine are linked in two dimensions by hydrogen bonds to a racemic pair of tartrate molecules.

Received 11 June 2004 Accepted 23 June 2004 Online 30 June 2004

Comment

This study was undertaken to identify the effects of chirality on the formation of salts, specifically the way chirality may affect hydration, as a result of interactions between a chiral drug and a chiral counter-ion. DL-Histidine and DL-tartrate samples were purchased from Fluka and used in the crystallization. The asymmetric unit of the title compound, (I), contains one molecule of histidine as a monocation (protonated at the amine and imidazole N atoms and deprotonated at the carboxylic acid) and the tartrate as a monocanion (Fig. 1).

The histidines form chains of single enantiomers (Fig. 2) linked along the *b* axis by hydrogen bonds from the NH group of the imidazole ring to a carboxyl O atom of the next histidine, similar to those described by Suresh & Vijayan (1987). The tartrate anions form dimers containing one D- and one L-tartrate ion in each pair (Fig. 2). The dimers are formed by means of a carboxylic acid O atom bonding to a neighbouring tartrate utilizing a side OH group [2.817 (2) Å]. Each histidine molecule in a chain is linked to the next chain below (viewed down the *a* axis in Fig. 2) by a single hydrogen bond from a carboxyl O atom to an NH group of the ammonium group [2.749 (2) Å]. The tartrates link the chains of histidine in two dimensions to create a three-dimensional hydrogen-bond network.

Experimental

A 5 ml saturated aqueous solution of DL-histidine was mixed with a 5 ml saturated aqueous solution of DL-tartaric acid and the vial was covered with a pierced film. This was placed in a larger glass vial containing 25 ml of methanol, sealed, and allowed to stand for three weeks at room temperature.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

Crystal data

 $C_{6}H_{10}N_{3}O_{2}^{+}\cdot C_{4}H_{5}O_{6}^{-}$ $M_{r} = 305.25$ Monoclinic, $P2_{1}/c$ a = 4.9695 (5) Å b = 13.4392 (12) Å c = 19.2749 (18) Å $\beta = 90.253 (2)^{\circ}$ $V = 1287.3 (2) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART APEX CCD diffractometer Thin-slice ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1997; Blessing, 1995) $T_{\min} = 0.843, T_{\max} = 0.990$ 7512 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.118$ S = 1.022967 reflections 194 parameters

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdots O8$	0.86	1.93	2.7689 (19)	166
$N1 - H1 \cdots O2^i$	0.86	1.84	2.6871 (19)	169
N3-H3A···O2 ⁱⁱ	0.89	1.87	2.7532 (18)	173
$N3-H3B\cdots O7^{iii}$	0.89	2.09	2.7937 (18)	135
$N3-H3B\cdots O6^{iii}$	0.89	2.35	3.1374 (18)	147
N3−H3C···O7 ⁱⁱ	0.89	1.85	2.7178 (18)	164
$O3-H3D\cdots O1^{iv}$	0.82	1.77	2.5856 (17)	173
$O5-H5A\cdots O4^{v}$	0.82	2.11	2.8174 (19)	145
$O5-H5A\cdots O4$	0.82	2.30	2.7015 (19)	111
O6−H6···O8 ^{vi}	0.82	1.92	2.7152 (18)	162

 $D_x = 1.575 \text{ Mg m}^{-3}$

Cell parameters from 2967

Mo $K\alpha$ radiation

reflections

 $\theta = 1.9-28.0^{\circ}$ $\mu = 0.14 \text{ mm}^{-1}$

T = 295 (2) K

 $R_{\rm int}=0.023$

 $\theta_{\rm max} = 28.0^{\circ}$

 $h = -6 \to 6$ $k = -17 \to 17$

 $l = -25 \rightarrow 25$

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Needle, colourless

 $0.50\,\times\,0.10\,\times\,0.10$ mm

2967 independent reflections

2207 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + (0.0666P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

Symmetry codes: (i) $1 - x, \frac{1}{2} + y, \frac{3}{2} - z$; (ii) x - 1, y, z; (iii) 1 - x, 1 - y, 1 - z; (iv) $1 + x, \frac{3}{2} - y, z - \frac{1}{2}$; (v) 2 - x, 2 - y, 1 - z; (vi) 1 + x, y, z.

The unit-cell dimensions and angles were compared to those reported for the parent histidine enantiomers by Edington & Harding (1974) and Madden *et al.* (1972). All H atoms were placed geometrically [C-H = 0.93–0.98, N-H = 0.86–0.89 and O-H = 0.82 Å; $U_{\rm iso}$ (H) = 1.2 or 1.5 times $U_{\rm eq}$ (parent atom)] and refined using a riding model.

Data collection: *SMART* (Siemens, 1994); cell refinement: *SAINT* (Siemens, 1994); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics:

Figure 1

ORTEP-3 (Farrugia, 1997) plot of the asymmetric unit of (I) (Z = 4), with displacement ellipsoids drawn at the 50% probability level.

re 2 rogen-bonding motifs

Hydrogen-bonding motifs for D-tartrate (green), L-histidine (yellow), Dhistidine (blue) and L-tartrate (pink).

ORTEP-3 (Farrugia, 1997) and *Materials Studio* (Accelrys, 2001); software used to prepare material for publication: *SHELXL*97.

References

Accelrys (2001). Materials Studio. Accelrys Inc., San Diego, CA, USA.

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Edington, P. & Harding, M. M. (1974). Acta Cryst. B30, 204-206.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Madden, J. J., McGandy, E. L., Seeman, N. C., Harding, M. M. & Hoy, A. (1972). Acta Cryst. B28, 2382–2389.

Sheldrick, G. M. (1997). SADABS, SHELXS97 and SHELXL97. University of Göttingen, Germany.

Siemens (1994). SMART (Version 5.622) and SAINT (Version 6.02). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Suresh, C. G. & Vijayan, M. (1987). J. Biosci. 12, 13.